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Spite is contagious in dynamic networks
Zachary Fulker 1, Patrick Forber 2, Rory Smead 3 & Christoph Riedl 1,4,5,6✉

Spite, costly behavior that harms others, presents an evolutionary puzzle: given that both the

actor and recipient do worse, how could it emerge? We show that dynamically evolving

interaction networks provide a novel explanation for the evolution of costly harm. Previous

work has shown that anti-correlated interaction (e.g., negative assortment or negative

relatedness) among behavioral strategies in populations can lead to the evolution of costly

harm. We show that these approaches are blind to important features of interaction brought

about by a co-evolution of network and behavior and that these features enable the emer-

gence of spite. We analyze a new model in which agents can inflict harm on others at a cost

to themselves, and simultaneously learn how to behave and with whom to interact. We find

spite emerges reliably under a wide range of conditions. Our model reveals that when

interactions occur in dynamic networks the population can exhibit correlated and anti-

correlated behavioral interactions simultaneously, something not possible in standard mod-

els. In dynamic networks spite evolves due to transient and partial anti-correlated interaction,

even when other behaviors are positively correlated and average degree of correlated

interaction in the population is low.
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Costly behavior that harms others, sometimes known as
spite1–3, is among the most basic of anti-social behaviors.
However, it presents an evolutionary puzzle. If there are

no benefits, how could it have emerged? There nevertheless are
cases of costly harm in both humans4–6 and non-humans7–10. For
instance, in human evolution there is a case to be made that the
killing of individuals who exhibit high degrees of reactive
aggression, clearly a dangerous harmful endeavor, played an
important role in the self-domestication of human ancestors11.
This has prompted a number of evolutionary models to explain
the emergence of such costly harm. We can represent this sort of
interaction abstractly with a simple game. Suppose two indivi-
duals interact and each has the opportunity to pay a cost to inflict
a harm on the other. Let b be the benefit derived from normal
social interaction and let −c be the cost an agent can pay to take
away that baseline benefit. This game is the Prisoner’s Delight12,
which contrasts with the Prisoner’s Dilemma in that acting anti-
socially, rather than pro-socially, is costly (Fig. 1). In this game,
unlike in the classic dilemma, harmful behavior is strictly
dominated and generally we should not expect it to evolve.

Standard models assume large randomly mixing populations
and, in such models, spiteful behavior is invariably eliminated.
Allowing non-random interaction due to assortment of strategies
opens new possibilities. It is well known that costly altruism can
evolve with non-random interactions. In particular, altruism can
evolve if interactions are correlated—that is, if altruists interact
disproportionately with other altruists13–15. A similar, but
inverse, result has been shown regarding spite16. If a given
strategy or type interacts disproportionately often with different
types—if interactions are anti-correlated—spite can emerge by
generating relative advantages. To illustrate this, consider a
population where individuals can play one of two possible stra-
tegies: ‘Social’ or ‘Spiteful’. ‘Spiteful’ agents choose to pay a cost to
inflict harm on their interaction partner, while ‘Social’ agents do
not pay a cost and do not inflict harm. Note that the strategy label
‘Social’ is used minimally to refer to non-spiteful behavior. Let r
denote the degree of anti-correlated behavior in the population:
with probability r individuals interact with those using different

strategies and with probability (1− r) interact randomly. Using
the payoffs from Fig. 1, we can deduce that ‘Spiteful’ behavior will
outperform ‘Social’ behavior whenever the degree of anti-
correlated interaction is larger than the cost-to-harm ratio: r >
c/b (see SI). This rule mirrors Hamilton’s rule for when altruism
will be favored, and was also derived by Hamilton in the context
of negative relatedness16,17. However, anti-correlated interactions
need not be generated by genetic relatedness. It can be realized in
any number of ways including green beard effects8, neutral
markers18, spatial structure19, and small populations20. The
exogenous parameter r represents correlated interactions
abstractly, without reference to a specific mechanism. We
demonstrate that dynamic networks can endogenously produce
the anti-correlated interactions necessary for spite, and that
dynamic networks do so in a way that is not captured with the
traditional analysis.

Dynamic networks capture the fact that in many human
interactions we choose the people we wish to interact with—and
how often—such as when we join social or religious groups21. It
has been shown that dynamic networks allow for endogenous
correlated interactions and thus for the emergence of altruism in
the classic Prisoner’s Dilemma22–26. We show that dynamic
networks can also do the opposite: produce anti-correlated
interactions which allow for the spread of spite. Specifically, spite
will spread in dynamic networks with adaptive link weights,
where these weights are based on reinforcement learning. This
happens because both correlated and anti-correlated interactions
occur simultaneously, enabling spite to spread through the net-
work via imitation. Reinforcement learning has been identified by
cognitive scientists and economists for its ability to describe
human choice in a variety of iterative decision-making
settings that is biologically plausible27–29. We use reinforcement
learning22,30,31 to dynamically update network ties, and find that
correlated and anti-correlated interactions emerge endogenously
in a population, which impacts the evolution of cooperation and
social conventions. Our approach contrasts with the class of
dynamic network models that represent network links as discrete
and where the dynamics describe patterns of link breakage and
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Fig. 1 Game play and updating mechanism. In each round, agents must (1) select an interaction partner, (2) update their network weight based on the
payoff, and (3) consider imitation. We normalize the payoffs by setting b+ c= 1 and examine variation in the ratio b/c.
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formation24,26,32. Real social network ties are rarely discrete,
therefore modeling network connections with reinforcement
learning adds an important element of realism33–35.

Here we employ these weighted dynamic networks to study the
evolution of costly harmful behavior in the Prisoner’s Delight. We
track the emergent levels of correlated and anti-correlated inter-
actions among the strategies over time and allow the strategies to
co-evolve over time via imitation. ‘Social’ agents become corre-
lated with one another and ‘Spiteful’ agents become anti-
correlated. Despite the advantages of pro-social behavior in this
game and the ability to correlate social interactions, spite never-
theless evolves in a wide range of conditions.

Results
We use agent-based computer simulations36 to explore the co-
evolution of network structure and behavioral strategies. Results
are averaged across 200 randomly seeded simulations with 1
million time-steps and a population of 50 with an imitation rate
of 0.01, unless otherwise noted. Each time-step every agent selects
one other agent to visit and both agents play the game. Agents
then update their likelihood to visit others based on the payoffs
received and have a chance to imitate the strategies other agents
(Fig. 1). Because playing ‘Social’ is a dominant strategy in the
Prisoner’s Delight, it will be expected to fixate in a randomly
mixing population. Any agent playing ‘Spiteful’ in a given
interaction will be worse off than if they had played ‘Social’
instead. However, when b > c, ‘Spiteful’ agents inflict greater harm
on their partner than they pay in cost. This difference allows for
the possibility of the ‘Spiteful’ strategy to spread via imitation in
non-random networks. Setting b+ c= 1 normalizes the payoffs
and allows us to analyze the effects of payoff differences through
the ratio b/c.

Spite spreads on dynamic networks. Our key question is whe-
ther reinforcement learning on a dynamic network can produce
anti-correlated interactions leading to the emergence of spiteful
behavior: the answer is yes. All populations converge to a uni-
formity of social behavior or spiteful behavior. Spite becomes the
norm in our model over a range of population sizes (Fig. 2a), as
well as imitation rates (Fig. 2b). This outcome occurs when the
ratio of the harm done to the cost of spite is sufficiently large, i.e.,
a high enough b/c value. As each agent reinforces their network
weights based on the payoffs they receive, over time both ‘Social’
and ‘Spiteful’ agents learn to visit ‘Social’ agents. This learning
process changes the share of all interactions that each of the four
possible ordered visitor–host couplings represents (Fig. 2c). The
result is that ‘Spiteful’ agents begin to participate in fewer inter-
actions as other agents learn to avoid visiting them. In each
round, however, every agent has their own opportunity to select a
partner to visit. It becomes likely that a ‘Spiteful’ agent will select
a ‘Social’ agent to visit, and therefore receive a payoff of b.
Conversely, ‘Social’ agents are visited more frequently as other
agents learn to target them. These interactions will occur with
both ‘Social’ and ‘Spiteful’ agents, providing a mixture of the
maximum payoff, 1, and numerous much smaller payoffs, c. As
the ratio of b/c grows larger, the smaller value of c will slow the
rate of growth in the average payoff received by ‘Social’ agents. At
the same time, the increased value of b and decreasing visits from
other ‘Spiteful’ agents will increase average payoff received by
‘Spiteful’ agents until it surpasses that of the ‘Social’ agents
(Fig. 2d). This means when ‘Social’ agents select a ‘Spiteful’ agent
to consider imitating, they will choose to adopt the ‘Spiteful’
strategy.

These central results are robust with respect to starting
population frequencies: spite is able to spread reliably to the

whole population from a single ‘Spiteful’ individual (Fig. S2).
Similar results are also derivable from a simplified analytic model
assuming discrete ties formed by choosing best-responses (see
‘Methods’). In the simplified model, a single ‘Spiteful’ individual
will invade and spread through the whole population provided
3b− c > 2, even if overall average interactions are positively
correlated when invasion occurs. Just as in our simulation results
the invasion of ‘Spiteful’ occurs because ‘Social’ agents make up a
larger proportion of the ‘Spiteful’ agents’ interactions than they
do for other ‘Social’ agents. This is possible because ‘Social’ agents
gain incoming ‘Spiteful’ links, reducing their share of ‘Social’
interactions. Simultaneously, ‘Spiteful’ agents shed harmful links
with other ‘Spiteful’ agents, increasing their share of ‘Social’
interactions.

The endogenous partner choices of the agents in response to
payoffs is essential. This allows ‘Spiteful’ agents to disproportio-
nately target ‘Social’ agents, even as the ‘Social’ agents are
disproportionately interacting with one another. The simulta-
neous independent formation of anti-correlated interactions for
‘Spiteful’ agents as well as correlated interactions for ‘Social’
agents is made possible by the use of asymmetric link updating in
the model. This allows each agent to form reinforced preferences
over the other agents they can choose to visit without being
influenced by who approaches them. This would not be possible
under symmetric link updating: then one agent’s preference for
frequently visiting another agent would cause the visited agent to
add reinforcing link weight to the visiting agent. Since both kinds
of correlated interaction can appear simultaneously, we represent
the mean degree of correlated interaction as �a. If �a > 0, mean
interactions are positively correlated. If �a < 0, mean interactions
are anti-correlated. The classic condition for the invasion and
stability of spite in a population corresponds to an overall degree
of correlated interaction below −c/b (see SI). Note that although
we can compare the results, �a is distinct from the classic
exogenous r-parameter as �a is merely a descriptive statistic of the
network structure resulting from the local learning process of
agents. Agents gradually adapt their behavior based on past
payoffs and everyone learns to avoid ‘Spiteful’ agents. This tends
to produce correlated interactions among agents engaged in
‘Social’ interactions, and anti-correlated interactions between
agents engaged in ‘Spiteful’ interactions (Fig. 2e). This outcome
highlights a frequently overlooked detail of previous modeling
approaches: it is important to consider and measure the degree of
correlated interaction for each strategy type individually, in
addition to the overall value. In our model, the overall average
degree of correlated interaction stays relatively stable and neutral
over time because the offsetting correlated interactions of each
strategy type. A notable consequence of this is that spite can
reliably spread through a population even with relatively neutral
correlated interaction (�a >�c=b; Fig. 2f). This result suggests a
significant limitation of the exogenous global methods of
modeling correlated interactions and that the well established
r > c/b condition for the evolution of harmful behavior does not
generalize.

Effect of variations in learning. Network learning speed influ-
ences the evolution of network weights and the resulting degree of
correlated interaction. The rate of learning can be adjusted by
multiplying the payoffs received in the reinforcement process.
Stronger adjustments of the relative weight of agents’ outgoing
network weights speed up the process of finding partners that
they perform better against. Thus, faster network learning causes
the correlated and anti-correlated interactions of ‘Social’
and ‘Spiteful’ agents to emerge earlier, leading to the ‘Spiteful’
strategy to become dominant after fewer time steps. Given a
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non-negligible network learning speed and a sufficient number of
time steps, however, spite regularly emerges in the population
provided a large enough b/c value (Fig. 3a). Network learning
speed also effects the rate at which global network patterns appear
and transition throughout the simulation. The overall network
displays four key stages during the network evolution process
(Fig. 3b). Populations begin with behavior akin to random mix-
ing, due to the fact that agents are initialized with uniform net-
work weights. Structure in the population begins to emerge as
agents learn to target ‘Social’ agents in their interactions. ‘Social’
agents begin to receive most incoming interactions from both
‘Social’ agents and ‘Spiteful’ agents. This process continues and
results in a core–periphery structure with ‘Social’ agents forming
the core, and ‘Spiteful’ agents generally in the periphery receiving
relatively few visitors. Despite this, the ‘Spiteful’ strategy begins to
spread by imitation due to comparison of relative payoffs between
individuals. Finally, the ‘Spiteful’ strategy comes to dominate and
the network slowly trends back toward random mixing as there
are no more ‘Social’ agents to target.

Another parameter that influences network evolution is the
discount rate in learning, which controls the rate at which weights
diminish over time. Network discounting determines how
significant recent payoffs are relative to total past payoffs in
determining network weights. This can be interpreted as an
abstract representation of recency bias or fading memory of past
payoffs. This is important both as a psychologically realistic
aspect of learning and since discounting is known to impact
results of reinforcement learning rules22,27–29.

Network discounting allows agents to unlearn network link
weights connected to agents who have switched from the ‘Social’

to ‘Spiteful’ strategy. This is implemented at the end of every
round by multiplying the weight of each network connection by
a constant (1− δ) where δ (0 ≤ δ ≤ 1) represents the degree to
which past payoffs are discounted. When δ ≈ 0, learning speed
slows down over time and agents will not adapt to changes in the
strategies of other players. If a frequently visited agent changes
strategy from ‘Social’ to ‘Spiteful’, the lack of new reinforcement
combined with the discount factor allows agents to unlearn their
previous reinforced behavior. In practice, this means that when
the network discount is small, it dampens the levels of
correlation and anti-correlation in the model (Fig. 3c). When
the network discount value (1− δ) is set to 0.01, or larger, spite
emerges over a large space of parameter combinations. But when
the network discount is set to 0.001, spite does not become the
dominate strategy even for very high values of the network
learning speed.

Thus far, we have only considered one imitation mechanism,
but we can easily implement others in the model. For example,
if the mechanism imitated behaviors based on total payoffs
rather than average payoff per interaction, spite rapidly dies
out and populations always converge on the ‘Social’ strategy.
The opposite is true of cooperation in the Prisoner’s
Dilemma14,22 (see Supplementary Note 4 for comparison).
Furthermore, we can implement alternative imitation mechan-
isms that mirror biological reproduction, copying other
strategies with a probability proportional to their success such
as the Moran process37,38. Adapting the Moran process to our
model shows that spite can still emerge with considerable
frequency, albeit with less regularity (see Supplementary Note 6
for more detail).
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Fig. 2 Dynamic networks produce (anti-)correlated interactions that lead to spite. a ‘Spiteful’ fixates at the final time-step of our model over a range of
population sizes, and b imitation rates. c The local network learning process of each agent changes the likelihood of each of the possible pairwise
interactions over time (plotted by seed). ‘Spiteful’ agents learn to target ‘Social’ agents, who provide the highest payoff, and not each other. Similarly, but
inversely, ‘Social’ agents learn to target each other, and to avoid ‘Spiteful’ agents. d The network learning process significantly improves the median average
payoff of ‘Spiteful’ agents (d–f averages over 200 simulations). e The system level result of these local learning processes is the formation of positively
correlated interaction patterns among ‘Social’ agents, anti-correlated interaction patterns among ‘Spiteful’ agents, and relatively neutral overall correlated
interactions. f Under the interaction patterns emerging in the model, if the ratio b to c is sufficiently large, then spite emerges. Interestingly, the standard
condition for the invasion and stability of spite, overall correlated interactions below −c/b, does not need to be satisfied for the ‘Spiteful’ strategy to emerge
in our model.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20436-1

4 NATURE COMMUNICATIONS |          (2021) 12:260 | https://doi.org/10.1038/s41467-020-20436-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Discussion
Our model shows that costly harm can spread through a popu-
lation, structured by preferential interaction, via imitation. Such
harm can emerge even without a significant overall degree of anti-
correlated interactions in the population. It is well known that in
populations with a sufficient degree of anti-correlated interaction
that costly harm will emerge8,12,16,18–20. What our model
demonstrates is that the degree of anti-correlated interaction can
be partial, transient, strategy specific, and that it can coexist with
correlated interactions among other strategies. These results
highlight the importance of evaluating patterns of correlated
interaction not just at a system level, but also at the level of
strategy type. Consequently, traditional global-parameter meth-
ods of representing such assortment in populations cannot ade-
quately capture the evolutionary consequences of dynamic
assortment on evolving networks. Thus, our results reveal a novel
evolutionary pathway for the emergence of costly harmful
behavior in any system where individual agents are capable of
learning by reinforcement and imitation. It has been recognized
that dynamic networks can provide a mechanism for the spread
of cooperation22–26, and our results reveal they can also cause the
spread of spite. Interestingly, recent empirical work shows that
among humans, anti-social behaviors spread more readily among
peers than do pro-social behaviors39.

There are two connections between our model and other for-
mal evolutionary models of social behavior that help clarify the
generality of our results. First, while we have constructed our
model using learning dynamics, the abstract nature of learning

models allow for a more general application. Learning
models tend to be associated with within-generation cultural
evolutionary interpretations40. Yet there are formal results that
show that models of imitation learning map onto biological
reproduction41,42, and models of reinforcement learning map
onto standard Darwinian evolutionary dynamics43. This allows
for biological interpretations of the model in addition to the
cultural interpretations. Second, while we have framed our
research in terms of correlated interaction, there are many
important formal results connecting the notion of correlation to
the notions of relatedness and inclusive fitness in Hamilton’s
work8,15,17,44,45. We find that our model has similar results when
using a strategy update rule more amenable a biological inter-
pretation (specifically a modified Moran process; see SI). This
further supports the view that the overall effect we observe should
be relevant to any species that is capable of preferential interac-
tion. A biological interpretation of our model would then have
implications for whether we need to re-evaluate the traditional
global-parameter approaches to kin-selection and inclusive
fitness.

Our results also have significant implications for open ques-
tions in social science and the evolution of social behavior.
Human (and human ancestor) populations are clearly candidates
for the operation of this evolutionary mechanism. Humans often
choose their interaction partners on the basis of past experience
and imitate the social behavior of others. Humans are also tuned
to the success of their behavioral strategies and can update their
behavior accordingly. That said, our model focuses only on the
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costs and benefits of behavioral strategies and does not include
motivational states, sophisticated cognition, or many other psy-
chological mechanisms. A full account of human social behavior
would require considering these factors explicitly. Applying these
models to humans, or any cognitively complex organism, raises a
host of questions about how psychological mechanisms relate to
behavior, e.g., about how motivations connect to evolutionary
models of behavioral change. One avenue for further research is
to pursue the connections between formal models, such as
ours, and comparative psychological studies on altruism and
spite4,46–48.

The origin and evolution of punishment is another area of
ongoing debate and research where our results are relevant. The
use of punishment has been well-document in humans and
broader ecological systems49–51. Punishment, broadly construed,
is costly harm inflicted conditional on some behavioral response.
An example of such behavior occurs in laboratory experiments of
iterative public goods games in labor settings with profit shar-
ing52. In these settings, humans choose to reduce the payoff of a
non-contributing free-rider even when they are charged a cost in
order to do so53. Punishment can influence social interaction in
many possible ways. Enforcing norms through punishment can
stabilize cooperation (or any other behavior)54, or create com-
plicated interactions between reciprocity and retaliation55,56.
There are also a number of hypotheses on the evolution of
punishment57. One influential approach treats punishment as an
altruistic behavior that stabilizes cooperative norms58. More
recent studies have shown surprising complexity to punishing
behavior, including anti-social punishment6,59, where individuals
punish cooperating members and can destabilize cooperation60.
Our study, by uncovering a new pathway for the evolution of
costly harm, suggests a new hypothesis for the origin of pun-
ishment. Rather than evolving to stabilize a cooperative social
environment by enforcing some beneficial norm, costly harm may
have emerged independently as a way of targeting competitors.
Then it need only be directed toward enforcement of some other
behavior to become true punishment3,61.

Methods
We model the co-evolution of interaction structure and social behavior62,63. Agents
are assigned initial behaviors in the Prisoner’s Delight game: ‘Social’ or ‘Spiteful’.
Agents choose their interaction partner, update who they are likely to choose on
the basis of payoffs received, and periodically imitate others who are receiving
higher average payoffs.

Simulation model. Network updating occurs via Roth-Erev reinforcement learn-
ing. Each round, agents select one other agent to visit proportional to their out-
going network weights, interact, and receive a payoff. Network weights are updated
according to Roth-Erev reinforcement learning on the basis of the payoff received:
the larger the payoff, the more weight is added to that agents out-going network
link. Network weights are updated asymmetrically, meaning only the agent who
initiated the interaction (the visitor) updates their outgoing weight based on the
received payoff. This asymmetry represents a situation where individuals can
control who they choose to approach, but not who approaches them. It also allows
some individuals, who receive more visitors than others, to have more interactions
per round (however, each agent is guaranteed one interaction as visitor). Our
network model also represents links in a continuous manner. This approach avoids
the need to exogenously set the number of network connections which can affect
results64. Instead, all learning and evolution of network weights occurs endogen-
ously. Network weights are initialized as uniform, representing random initial
interaction. Structured interaction emerges as agents learn and payoffs accumulate.

Strategy learning occurs via imitation. After each round is complete, agents
have a chance to consider imitating the strategy of another agent. When imitating,
an agent selects another agent with a probability proportional to how often they
interact, and if the selected agent received a higher average payoff per interaction in
the previous round, imitates that agent’s strategy. This captures the importance of
social learning in many animal behaviors, while also allowing individuals to select
their interactions based on their own experiences22,65,66. Imitation is a form of
social learning that is used in a variety of contexts to model cultural evolution40,67

and also has important formal relationships to models of biological evolution41.
Initial strategies are determined by randomly assigning half of the agents to be

‘Social’ and the other half to be ‘Spiteful’ (Supplement Note 5 also examines the
case of a single random ‘Spiteful’ agent).

More precisely, we model a set of N agents in pairwise games of cooperation
across a set number of rounds (1 million). In each round, every agent selects
another agent to play against. During every interaction, an agent plays their pure
strategy independently of the other agent’s strategy, and receives a payoff
accordingly. Next, the agent who initiated the interaction reinforces their outgoing
network connection by the payoff received. An agent can be a player in a maximum
of N interaction per round (1 as visitor, and N− 1 as host). At the end of each
round, every agent independently and simultaneously considers imitating another
agent with a set probability proportional to the imitation rate (λ). If an agent is
selected to consider imitation, then they randomly select another agent with a
probability proportional to the weight of their outgoing and incoming links with
other agents. This represents the overall frequency of interaction with each other
agent so individuals are more likely to consider agents with which they have more
interactions. The selected agent’s strategy is imitated if and only if that agent
received a strictly greater average payoff per interaction than the imitating agent.
We also include an error chance (e= 0.01) when agents consider imitation, in
which a random strategy is chosen rather than imitating another agent.

Each agent i has a pure strategy (‘Social’, ‘Spiteful’) and vector representing their
reinforcement weights for the choice of which player to visit: (wi1,wi2, . . . ,win)
where wij represents the weight related to player i visiting player j. Self-visits are not
allowed (wii= 0). At the start of each simulation, half of the agents are ‘Social’ and
half of the agents are ‘Spiteful’ (results are robust to different starting proportions;
Fig. S2). Initial network partner weights are set uniformly to L/(N− 1), where L is a
parameter determining initial learning weights. We use the convention L= 9, so
that network partner weights start at wij= 1 for the smallest population we study
(N= 10). To ensure similar reinforcement learning speed relative to total initial
weights across different population sizes, we kept L constant over all simulations.
Changing L varies network learning speed because larger L values reduce the
relative size of each payoff in comparison to the initial uniform network weights.

The model has two parameters that affect the reinforcement of network weights:
discounting (δ) and error (ϵ). Discounting reduces past learning weights as more
reinforcement occurs, gradually allowing agents to forget old network connections.
Errors represent mistakes, noise, or mutations where an agent selects an interaction
partner at random rather than according to their network weights. Both
components have been shown to impact the stability and long-run behavior of
reinforcement learning.

When selecting an interaction partner for a given round, the probability of
choosing agent j is proportional to the current network weights:

PrðjÞ ¼ ð1� ϵÞ wijP
kwik

þ ϵ
1
jNj ; ð1Þ

where ϵ is the error rate, N is the set of agents, j∈N, and k∈N.
After each round of interactions, link weights for the selected outgoing links are

updated by discounting the prior weight by a factor (δ) and adding the received
payoff (π):

w0
ij ¼ ð1� δÞwij þ Rπi; ð2Þ

where w0
ij is the link weight after updating and πi is sum of i’s the most recent

payoffs. R is the rate of network learning, set to R= 1 by default, higher values
result in faster learning (results are robust to both small and large learning rates;
(Fig. S3). All link weights are updated simultaneously at the end of each round,
reflecting the outcome of every interaction an agent was a part of during the round.

After link weights have been updated at the end of a round, every agent
independently considers imitating another agent’s strategy proportional to the
imitation rate (γ). If an agent is randomly selected to consider imitation, they select
a possible imitation partner proportional to their outgoing and incoming link
weights associated with every other agent:

PrðjÞ ¼ wij þ wjiP
kðwik þ wkiÞ

: ð3Þ

If the selected imitation partner has received a higher average payoff over all
interactions in the previous round, then the agent considering imitation will adopt
the selected agent’s strategy.

We measure of correlated interactions for each agent (ai) as a function of the
total proportion of the incoming and outgoing link weights of that agent for all
connected agents of the same strategy type. Let si denote the strategy type of agent i,
and let Samei denote the set of agents j that have the same strategy as i (si= sj). We
calculate the difference between the proportion of same-strategy interactions and
the proportion of same-strategies assuming random interaction:

ai ¼
P

j2Samei
ðwij þ wjiÞP

kðwik þ wkiÞ
� jSameij

jNj : ð4Þ

If ai > 0, i interacts with agents of the same type more than would in random
interaction and thus are positively correlated, and if ai < 0, they are anti-correlated.
This allows us to represent correlated and anti-correlated interaction
simultaneously in different sub-populations. The degree of correlated interactions
for ‘Social’ agents is the mean measure of correlated interaction of all agents using
the ‘Social’ strategy; the degree for ‘Spiteful’ agents is the mean measure for all
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agents using the ‘Spiteful’ strategy. The overall measure of correlated interaction for
the population ð�aÞ is the mean degree of correlation for all agents in the population
regardless of strategy type. Note that in an unstructured population with uniform
correlated interaction rates, the classic inequality r > c/b corresponds to the �a-value
of −c/b with respect to the stability and invasion conditions for ‘Spiteful’ behavior
(see SI). Also note that the measure of correlated interaction for extinct strategy
types is not defined because it is the mean of an empty set, but we plot these values
as 0 as these types can be re-introduced by imitation error.

All model parameters are summarized in Table 1.

Analytic model. A simplified model enables the derivation of mathematical results
that illustrate and further support the key insights of our study. This simplified
model uses discrete network links formed by a best-response rule, strategy updating
occurs by imitation similarly to the central model. Analytic results from the sim-
plified model further support the simulation results of the central model: endo-
genous partner choice in dynamic networks allows spite to spread via imitation.

Suppose there are N agents, each with a strategy si∈ {‘Spiteful’, ‘Social’}. Each
agent i at each time t has exactly one outgoing link to one other agent j ≠ i,
represented as ltij 2 N ´N (a temporal adjacency matrix), incoming links are
limited only by the number of agents. At a given time t, the interaction set Iti for an
agent i is the set of all their interaction partners: Iti ¼ fjjltij or ltjig. Let u(si, sj) be the
payoff of i’s strategy played against j’s strategy.

At the beginning of each time-step, agents select their outgoing link using a
myopic best-response rule: link to another agent such that payoffs are maximized if
all strategies remain constant. Precisely, each agent forms one link ltij for time-step t
by choosing randomly (with a uniform distribution) from the set of optimal links
Li:

Li ¼ flijjuðsti ; stj Þ≥ uðsti ; stkÞ for all k 2 Ng: ð5Þ
After links are formed, agents play the game in Fig. 1 with every agent in their

interaction set. An agent’s average payoff per interaction at time t is:

�Ut
i ¼

X
j2Iti

uðsti ; stj Þ=jIti j: ð6Þ

After interacting, agents update their strategies by imitation. Let Bt
i represent

the equal or better-performing agents in i’s interaction set (including i):

Bt
i ¼ fj 2 fIti ∪ igj�Ut

j ≥ �Ut
ig: ð7Þ

During imitation i selects a random j 2 Bt
i (with a uniform distribution) and adopts

that agent’s strategy: stþ1
i ¼ stj . After imitation, links are updated as above and the

process repeats.

Conditions for invasion and spread of spite. Note that because the game is dom-
inance solvable, all agents regardless of their own strategies will form links with
agents playing ‘Social’. Thus, in any mixed population (N > x > 0), ‘Spiteful’ agents
will only have ‘Social’ interaction partners whereas ‘Social’ agents may have a mix
of partners. Consequently, the proportion of ‘Social’ interactions for a ‘Spiteful’
agent will always exceed the proportion of ‘Social’ interactions for anyone they
visit. This difference, when b > c, allows for the possibility of spite to spread
through the population. Given endogenous partner choice, whether spite is
expected to spread through imitation depends on the relevant mean payoffs of the
agents interacting with ‘Spiteful’ individuals. To determine this condition, suppose
there is a single ‘Spiteful’ agent i. This agent will visit a single ‘Social’ agent j, and
not be visited by anyone. Thus, �Ut

i ¼ b.
The ‘Social’ agent j will be visited by i (ltij), will visit some other ‘Social’ agent k

(ltjk), and will be visited by z other ‘Social’ agents (where 0 ≤ z ≤N− 2). Thus,

�Ut
j ¼ ðcþ 1þ zÞ=ðz þ 2Þ and j has a chance to imitate i if and only if

b≥
z þ 1þ c
z þ 2

: ð8Þ

If the above inequality is strict, i will never imitate j and j will eventually imitate i’s
‘Spiteful’ strategy.

Since c < 1, there will be some c, b, and z such that ‘Spiteful’ will spread by
imitation. To determine at what payoff values we can expect spite to begin to
spread from a single ‘Spiteful’ agent, note that all agents form a single link. Hence,
the expected value of z is 1 and the expected mean payoff for j is
Expð�Ut

j Þ ¼ ðcþ 2Þ=3. Thus, spite will be expected to spread by imitation whenever
b > (c+ 2)/3 or:

3b� c > 2: ð9Þ
Generalizing this, if there are x ‘Social’ agents and y ‘Spiteful’ agents, a ‘Social’

agent j who is interacting with at least one ‘Spiteful’ individual is expected to be
visited by (y− 1)/x other ‘Spiteful’ individuals and 1 other ‘Social’ individual. Thus,
the expected mean payoff for a ‘Social’ agent j who is interacting with at least one
‘Spiteful’ agent is

Expð�Ut
j Þ ¼

2þ c 1þ y�1
x

� �
3þ y�1

x

: ð10Þ

Agent j is expected to imitate a ‘Spiteful’ individual whenever Expð�Ut
j Þ< b or

b 3þ y � 1
x

� �
� c 1þ y � 1

x

� �
> 2: ð11Þ

Comparing the generalized inequality to the case where y= 1 reveals that the
chance of imitating ‘Spiteful’ becomes strictly greater the more ‘Spiteful’ individuals
are present in the population. Once a single ‘Spiteful’ individual begins to spread, it
is expected that they will continue to spread through the entire population.

Measure of correlated interaction during invasion. We can employ our measure of
correlated interaction to this analytic model as well. Suppose there is a single
‘Spiteful’ individual i in a population of size N, and that the condition for the
spread of spite is met (3b− c > 2). After network links are formed, we can calculate
the expected a-value of the population. Note that ai=−1/N for the single ‘Spiteful’
individual and aj= 2/3− (N− 1)/N (expected) for the j that i visits, and ak= 1−
(N− 1)/N (expected) for the remaining N− 2 individuals. The aggregate correlated
interaction is then

�a ¼ ð1=NÞ ai þ aj þ
X
k

ak

 !
; ð12Þ

which reduces to

�a ¼ 1
N
ð2=3� 2=NÞ: ð13Þ

Using this equation we can see that �a > 0 whenever N > 3. Therefore, when spite
begins to invade and spread in a population of 4 or more, strategies are (on
average) positively correlated. This finding shows clearly that the general
conditions derived in classic models (e.g., r > c/b) do not generalize to dynamic
networks. Indeed, even the very weak condition that �a < 0 is not necessary for spite
to invade and spread. This reinforces the important lesson that traditional
population-level statistics do not adequately describe social change in dynamic
networks.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All figures and data can be recreated using our code which has been made publicly
available. Simulations were written in C++ and run for 106 rounds of play. Data
aggregation and network plots were created using Python.

Code availability
Replication code available on GitHub: https://doi.org/10.5281/zenodo.3962292.
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